Хостинг от HOST PROM - это надежное место для Ваших проектов !

 


Оглавление.

Стр.

1.        Аннотация.

2.        Задание.

3.        Выбор оптимальных параметров.

4.        Изменение поверхности горения по времени.

5.        Профилирование сопла.

6.        Расчет ТЗП.

7.        Приближенный расчет выхода двигателя на режим по

начальной поверхности горения. Геометрические характеристики заряда камеры.

8.        Расчет на прочность основных узлов камеры.

9.        Расчет массы воспламенительного состава.

10.   Описание конструкции.

11.   Спец. часть проекта. УВТ.

12.   Описание ПГС.

13.   Литература.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1.Анотация.

Ракетные двигатели твердого топлива (РДТТ) получили в настоящее время широкое применение. Из опубликованных данных следует, что более 90 % существующих и вновь разрабатываемых ракет оснащаются РДТТ. Этому способствуют такие основные достоинства их, как высокая надежность, простота эксплуатации, постоянная готовность к действию. Наряду с перечисленными достоинствами РДТТ обладают рядом существенных недостатков: зависимостью скорости горения ТРТ от начальной температуры топливного заряда; относительно низким значением удельного импульса ТРТ; трудностью регулирования тяги в широком диапазоне.

РДТТ применяются во всех классах современных ракет военного назначения. Кроме того, ракеты с РДТТ используются в народно- хозяйственных целях, например, для борьбы с градом, бурения скважин, зондирования высоких слоев атмосферы и.д.

Разнообразие областей применения и выполняемых задач способствовало разработке большого числа различных конструкций, отличающихся габаритными, массовыми, тяговыми, временными и другими характеристиками. Некоторые представления о широте применения могут дать характеристики тяги РДТТ, находящиеся в крайних областях этого диапазона. Для РДТТ малых тяг значение тяги находится в пределах от 0,01 Н до 1600 Н. Тяги наиболее крупных двигателей достигают десятков меганьютонов. Например, для РДТТ диаметром 6,6 м тяга составляет 31 МН.

В данной работе рассмотрен вопрос проектирования в учебных ( с использованием ряда учебных пособий) РДТТ верхней ступени ракеты носителя, на смесевом топливе, полагающий знакомство с основами расчета и проектирования твердотопливных двигателей, методиками определения основных параметров двигателя, расчетом прочности, примерами проектирования топливных зарядов.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.  Выбор оптимальных параметров и топлива.

 

Тяга двигателя в пустоте

P(Н)=

30000

Время работы двигателя

t(с)=

25

Давление на срезе сопла

P a(Па)=

10270

Топливо ARCADENЕ 253A

 

Начальная скорость горения

u1(мм/с)=

1,554

Показатель степени в законе горения

n

0,26

Коэффициент температурного влияния наскорость горения

a t=

 0,00156

Начальная температура топлива

tн(°С)=

20

Начальная температура топлива

Tн(К)=

293,15

Плотность топлива

r(кг/м^3)=

1800

Давление в камере сгорания

P k(Па)=

6150000

Скорость горения при заданномдавлении

u(мм/с)=

4,558

Температура продуктов сгорания

T(К)=

3359,6

Молекулярный вес продуктов сгорания

m(кг/кмоль)=

19,531

Средний показатель изоэнтропы насрезе сопла

n=

1,152

Расчётный удельный импульс

Iу(м/с)=

2934,8

Расходный комплекс

b(м/с)=

1551,5

Идеальный пустотный удельный импульс

Iуп(м/с)=

3077,3

Удельная площадь среза сопла Fуд

(м^2с/кг)=

30,5

Относительная площадь среза сопла

Fотн=

54,996

Коэффициент камеры

jк=

0,980

Коэффициент сопла

jс=

0,960

Коэффициент удельного импульса

jI=

0,941

Коэффициент расхода

mс=

0,990

Коэффициент расходного комплекса

jb=

0,990

Действительный расходный комплекс

b(м/с)=

1535,828

Действительный удельный пустотныйимпульс

Iуп(м/с)=

2895,124

Действительный расход газа

m(кг/с)=

10,362

Площадь минимального сечения

Fм(м^2)=

0,003

Средняя поверхность горения

W(м^2)=

1,263

Высота свода

e0(мм)=

113,947

 

e0(м)=

0,114

Отношение площадей

k=Fсв/Fм=

3,000

Площадь свободного сечения канала

Fсв(м^2)=

0,008

Требуемая масса топлива

mт(кг)=

259,056

 

 

 

Количество лучей звезды

i=

6

Угол

q(°)=

67,000

e=0,7…0,8

 

0,750

Полуугол

q/2(ррад)=

0,585

Угол элемента звезды

a(рад)=

0,393

Первыйвариант расчёта длины топливного заряда

 

A=

 

0,817

H=

 

0,084

Диаметр камеры

D=

0,396

Площадь камеры сгорания

Fк=

0,123

Радиус камеры

R(м)=

0,198

Отношение высоты свода к диаметрукамеры

e0/D=

0,288

Относительная величина вылета крышки

m=

0,500

Величина вылета крышки

b(м)=

0,099

Приближённый обьём элиптическогоднища

V(м^3)=

0,008

Обьём занимаемый двумя днищами

V(м^3)=

0,016

Относительный радиус скругления свода

r/D=

0,015

Радиус скругления свода

r(м)=

0,006

Радиус скругления луча

r1(м)=

0,005

Вспомогательная площадь

F1(м^2)=

0,003

Вспомогательная площадь

F2(м^2)=

0,006

Вспомогательная площадь

F3(м^2)=

0,003

Площадь остаточного топлива

Fост(м^2)=

0,004

Длина обечайки камеры сгорания 

L(м)=

1,229

Длина заряда вначале горения

L1(м)=

1,328

Длина камеры сгорания вместескрышками

L(м)=

1,427

Относительная длина камеры

Lот=L/D=

3,605

Материал обечайки двигателя

Композит материал (стеклопласт ППН)

Плотность материала обечайкидвигателя

r(кг/м^3)=

2070,000

Прочность материала обечайкидвигателя

σв (Мпа)=

950

Материал днищ двигателя

Титановыйсплав ВТ14 

Плотность материала днищь двигателя

r(кг/м^3)=

4510,000

Прочность материала днищь двигателя

σв(Мпа)=

1000

Коэффициент запаса прочности

n=

1,400

Толщина днища

δ дн=

0,002

Толщина обечайки

δ об=

0,002

Масса обечайки двигателя

 

 

 топливо заполняет одно днище

mоб=

5,679

Масса днища двигателя

mдн=

2,572

Суммарная масса топлива, днищь иобечайки топливо заполняет одно днище

mдв=

269,881

 

Приближенныйрасчет выхода двигателя на стационарный режим

 

Геометрические характеристики зарядаи камеры

Диаметр заряда

D,м=

0,387

Длина заряда

l,м=

1,365

Длина камеры сгорания

L,м=

1,462

Диаметр критического сечения

d,м=

0,057

Площадь критического сечения

Fкр2=

0,003

Площадь проходного сечения

F=

0,005

Давление выхода на режим

 

 

Давление вскрытия сопловой диафрагмы

 

 

Характеристики топлива и условия егогорения

 

Даление в камере сгорания

р,Мпа=

6,15

Давление воспламенения

рВ,Па=

1845000

Начальная скорость горения

u,м/с=

0,001554

Плотность топлива

r,кг/м3=

1800

Температура продуктов сгорания

Т,К=

3359,6

Молекулярный вес продуктов сгорания

 

m, кг/кмоль=

19,531

Показатель изоэнторпы

K=

1,164

Коэффициент тепловых потерь

c=

0,95

Коэффициент расхода

j2=

0,95

Показатель скорости горения

n=

0,26

 

Предварительные вычисления

 

Объем одной крышки

Vт3=

0,007600335

Площадь поверхности горения

Sт2=

1,26

Свободный объем камеры сгорания

Vсв3=

0,014663394

Газодинамическая функция

A(k)=

0,641445925

Параметр заряжания

N=

7,61987E-06

 

Расчет установившегося давления

 

 

Величина давления при N1=N

 pуст, Па=

8246824,202

Величина e' в первом приближении

 

0,00337207

Значение N1 впервом приближении

 

7,64566E-06

Величина установившегося давления

во втором приближении

руст,МПа=

8,209266925

Относительное отклонение давлений

 на приближениях

=

0,00455415

Принимаем величину установившегосядавления

 руст, Мпа

8,209266925

 

 

Расчет давления в период выходадвигателя на режим

 

Величина

а-1=

92,7601292

Время выхода на режим

t,с=

0,0397

Интервалы времени Dt, сек

 

0,00397

 

Время t, сек

Относительное давление

Действительное давление

 

0,004

0,4936

4,052

0,008

0,6406

5,259

0,012

0,7475

6,136

0,016

0,8237

6,762

0,02

0,8774

7,203

0,024

0,915

7,511

0,028

0,9411

7,726

0,032

0,9593

7,875

0,036

0,9718

7,978

0,04

0,9806

8,05

\s

 

 

 

 

4.Изменение поверхности горения по времени.

 

Высота свода заряда: е0 = 0,114м.;

Длина заряда: L = 1,328м.;

Длина луча заряда: Н = 0,070м.;

Радиус камеры сгорания: R = 0,198м.;

Величина вылета крышки: b = 0,092м.;

Радиус скругления свода: r = 0,005м.;

Радиус скругления луча: r1­­­ = 0,8ּr = 0,0044.;

Полуугол раскрытия лучей: β = Θ/2 = 33,53˚ = 0,585 рад.;

 Угол эл-та звезды:

˚ = 0,44779 рад.;

Длина луча без радиуса скругления: x = H – r = 0,179-0,006 = 0,0781 м;

Скорость горения топлива: u = 4,558 мм/с = 0,00456м/с.;

 



Страниц (9):  [1] 2 3 4 5 6 7 8 9

 


Быстрый хостинг
Быстрый хостинг - Скорость современного online бизнеса

 

Яндекс.Метрика

Load MainLink_Second mode.Simple v3.0:
Select now URL.REQUEST_URI: webknow.ru%2Faviatsija_00005.html
Char set: data_second: Try get by Socet: webknow.ru%2Faviatsija_00005.html&d=1
					  

Google

На главную Авиация и космонавтика Административное право
Арбитражный процесс Архитектура Астрология
Астрономия Банковское дело Безопасность жизнедеятельности
Биографии Биология Биология и химия
Ботаника и сельское хозяйство Бухгалтерский учет и аудит Валютные отношения
Ветеринария Военная кафедра География
Геодезия Геология Геополитика
Государство и право Гражданское право и процесс Делопроизводство
Деньги и кредит Естествознание Журналистика
Зоология Издательское дело и полиграфия Инвестиции
Иностранный язык Информатика, программирование Исторические личности
История История техники Кибернетика
Коммуникации и связь Косметология Краткое содержание произведений
Криминалистика Криптология Кулинария
Культура и искусство Культурология Литература и русский язык
Литература зарубежная Логика Логистика
Маркетинг Математика Медицина, здоровье
Международное публичное право Частное право Отношения
Менеджмент Металлургия Москвоведение
Музыка Муниципальное право Налоги
Наука и техника Новейшая история Разное
Педагогика Политология Право
Предпринимательство Промышленность Психология
Психология, педагогика Радиоэлектроника Реклама
Религия и мифология Риторика Сексология
Социология Статистика Страхование
Строительство Схемотехника Таможенная система
Теория государства и права Теория организации Теплотехника
Технология Транспорт Трудовое право
Туризм Уголовное право и процесс Управление
Физика Физкультура и спорт Философия
Финансы Химия Хозяйственное право
Цифровые устройства Экологическое право Экология
Экономика Экономико-математическое моделирование Экономическая география
Экономическая теория Этика Юриспруденция
Языковедение Языкознание, филология

design by BINAR Design