Хостинг от HOST PROM - это надежное место для Ваших проектов !

 


         

 

     Основным назначением системы распознавания образов является отыскание решения о принадлежности предъявляемых ей образов некоторому классу. Один из важных подходов к задаче  предполагает использование разделяющих функций. В условиях, когда мы обладаем лишь немногочисленными априорными сведениями о распознаваемых образах, при построении распознающей системы лучше всего использовать обучающую процедуру. На первом этапе выбираются произвольные разделяющие функции и затем в процессе выполнения итеративных шагов обучения эти разделяющие  функции доводятся до оптимального либо приемлемого вида.

     К определению разделяющих функций в настоящее время существует несколько подходов. В данной работе рассматриваются два из них, которые имеют соответствующие нейросетевые реализации. Первый из них - персептронный подход.

     В начале 60х годов Минский, Розенблатт, Уиндроу и другие разработали сети, состоящие из одного слоя искусственных нейронов. Часто называемые персептронами, они были использованы для широкого класса задач, в том числе и искусственного зрения. Однако Минский и Пайперт [2] доказали, что используемые в то время однослойные сети теоретически неспособны решить многие простые задачи.

     Сети обратного распространения - наиболее успешный, по-видимому, из современных алгоритмов, преодолевает ограничения, указанные Минским. Обратное распространение является систематическим методом для обучения многослойных сетей.

Второй подход при определении разделяющих функций использует понятие потенциальной энергии. Так Хопфилдом [7] в задаче о релаксации некоторого начального состояния к одному из устойчивых состояний нейронной сети было введено понятие потенциальной энергии, которая уменьшалась в процессе релаксации. Соответствующие нейронные сети известны в литературе как сети Хопфилда. Это сети с обратными связями, которые в связи с этим обладают некоторыми свойствами, заслуживающими внимания.

На этапе бакалаврской работы цель состояла в создании компьютерных моделей указанных выше нейронных сетей и анализе некоторых свойств, связанных с их обучением и распознаванием ими образов.

 

 

1.Общее описание исследуемых нейронных сетей.

 

 

1.1 Однослойные сети. Персептрон.

 

 

     В соответствии с [3] персептрон представляет собой модель обучаемой распознающей системы. Он содержит матрицу светочувствительных элементов (S-элементы), ассоциативные элементы (А-элементы) и реагирующие элементы (R-элементы).  По сути персептрон состоит из одного слоя искусственных нейронов, соединенных с помощью весовых коэффициентов с множеством входов.

     В 60е годы персептроны вызвали большой интерес. Розенблатт [3] доказал теорему об обучении  персептрона и тем самым  показал, что персептрон способен научиться всему, что он способен представлять.  Уидроу [12-15] дал ряд убедительных  демонстраций  систем персептронного типа.  Исследования возможности этих систем показали, что персептроны не способны обучиться ряду простых задач. Минский [2] строго проанализировал эту проблему и показал, что имеются жесткие ограничения на то, что могут выполнять однослойные персептроны, и, следовательно, на то, чему они могут обучаться.

     Один из самых пессимистических результатов Минского показывает, что однослойный персептрон не может воспроизвести такую простую функцию как  ИСКЛЮЧАЮЩЕЕ ИЛИ. Это - функция от двух аргументов, каждый из которых может быть нулем или единицей. Она принимает значение единицы, когда один из аргументов равен единице  (но не оба). Если проблему представить с помощью однослойной однонейронной системы, то легко видеть, что при любых значениях весов и порогов невозможно расположить прямую линию, разделяющую плоскость (пространство образов) так, чтобы реализовывалась функция ИСКЛЮЧАЮЩЕЕ ИЛИ. Имеется обширный класс функций (наряду с функцией ИСКЛЮЧАЮЩЕЕИЛИ), не реализуемых однослойной сетью. Об этих функциях говорят,  что они являются линейно неразделимыми, и они накладывают определенные ограничения на возможности однослойных сетей. Линейная разделимость ограничивает однослойные сети задачами классификации, в которых множества точек (соответствующих входным значениям) могут быть разделены геометрически. В случае двух входов разделитель является прямой линией. В случае трех входов разделение осуществляется плоскостью, рассекающей трехмерное пространство. Для четырех или более входов визуализация невозможна и необходимо мысленно представить n-мерное пространство, рассекаемое ‘‘гиперплоскостью’’ - геометрическим объектом, который рассекает пространство четырех или большего числа измерений. Как показано в [11], вероятность того, что случайно выбранная функция окажется линейно разделимой, весьма мала. Так как линейная разделимость ограничивает возможности персептронного представления, то однослойные персептроны на практике ограничены простыми задачами.

      Чтобы сеть представляла практическую ценность, нужен       систематический метод (алгоритм) для вычисления значений весов и порогов. Процедуру подстройки весов обычно называют обучением. Цель обучения состоит в том, чтобы для некоторого множества входов давать желаемое множество выходов. Алгоритм обучения персептрона был предложен в [3] и имеет множество модификаций. В настоящей работе реализованна модель одного из вариантов.

 

 

1.2 Многослойные сети.

 

Серьезное ограничение представляемости однослойными сетями можно преодолеть, добавив дополнительные слои. Многослойные сети можно получить каскадным соединением  однослойных сетей, где выход одного слоя является входом для последующего слоя, причем такая сеть может привести к увеличению вычислительной мощности лишь в том случае, если активационная функция между слоями будет нелинейной.

Многослойные сети способны выполнять общие классификации, отделяя те точки, которые содержаться в выпуклых ограниченных или неограниченных областях.  Если рассмотреть простую двухслойную сеть с двумя нейронами в первом слое, соединенными с единственным нейроном во втором слое, то каждый нейрон первого слоя разбивает плоскость  на две полуплоскости, образуя в пространстве образов V-образную область, а нейрон второго слоя реализует различные функции при подходящем выборе весов и порога. Аналогично во втором слое может быть использовано три нейрона с дальнейшим разбиением плоскости и созданием области треугольной формы. Включением достаточного числа нейронов во входной слой может быть образован выпуклый многоугольник любой желаемой формы. Точки, не составляющие выпуклой области, не могут быть отделены о других точек плоскости двухслойной сетью.

   Трехслойная сеть является более общей. Ее классифицирующие возможности ограничены лишь числом искусственных нейронов и весов. Ограничения на выпуклость отсутствуют. Теперь нейрон третьего слоя принимает в качестве входа набор выпуклых многоугольников, и их логическая комбинация может быть невыпуклой. При добавлении нейронов и весов число сторон многоугольника может неограниченно возрастать. Это позволяет аппроксимировать область любой формы с любой точностью. В добавок не все выходные области второго слоя должны пересекаться. Возможно, следовательно, объединять различные области, выпуклые и невыпуклые, выдавая на выходе единицу всякий раз, когда входной вектор принадлежит одной из них.

    Для обучения искусственных нейронных сетей широко применяется процедура обратного распространения. Обратное распространение было независимо предложено в трех различных работах [8, 9, 10]. В работе программно реализованна двухслойная сеть обратного распространения.

 

 

 

 1.3 Сети Хопфилда.

 

Сети, рассмотренные выше, не имели обратных связей, т.е. связей, идущих от выходов сети к их входам. Отсутствие обратных связей гарантирует безусловную устойчивость сетей. Так как сети с обратными связями имеют пути от выходов к входам, то отклик таких сетей является динамическим, т.е. после приложения нового входа вычисляется выход и, передаваясь по сети обратной связи, модифицирует вход. Затем выход повторно вычисляется и процесс повторяется снова и снова. Для устойчивой сети последовательные итерации приводят к все меньшим изменениям выхода, пока в конце концов выход не становится постоянным. Для многих сетей процесс никогда не заканчивается, такие сети называются неустойчивыми.  Проблема устойчивости

Страниц (5):  [1] 2 3 4 5


 


Быстрый хостинг
Быстрый хостинг - Скорость современного online бизнеса

 

Яндекс.Метрика

Load MainLink_Second mode.Simple v3.0:
Select now URL.REQUEST_URI: webknow.ru%2Fkibernetika_00005.html
Char set: data_second: Try get by Socet: webknow.ru%2Fkibernetika_00005.html&d=1
					  

Google

На главную Авиация и космонавтика Административное право
Арбитражный процесс Архитектура Астрология
Астрономия Банковское дело Безопасность жизнедеятельности
Биографии Биология Биология и химия
Ботаника и сельское хозяйство Бухгалтерский учет и аудит Валютные отношения
Ветеринария Военная кафедра География
Геодезия Геология Геополитика
Государство и право Гражданское право и процесс Делопроизводство
Деньги и кредит Естествознание Журналистика
Зоология Издательское дело и полиграфия Инвестиции
Иностранный язык Информатика, программирование Исторические личности
История История техники Кибернетика
Коммуникации и связь Косметология Краткое содержание произведений
Криминалистика Криптология Кулинария
Культура и искусство Культурология Литература и русский язык
Литература зарубежная Логика Логистика
Маркетинг Математика Медицина, здоровье
Международное публичное право Частное право Отношения
Менеджмент Металлургия Москвоведение
Музыка Муниципальное право Налоги
Наука и техника Новейшая история Разное
Педагогика Политология Право
Предпринимательство Промышленность Психология
Психология, педагогика Радиоэлектроника Реклама
Религия и мифология Риторика Сексология
Социология Статистика Страхование
Строительство Схемотехника Таможенная система
Теория государства и права Теория организации Теплотехника
Технология Транспорт Трудовое право
Туризм Уголовное право и процесс Управление
Физика Физкультура и спорт Философия
Финансы Химия Хозяйственное право
Цифровые устройства Экологическое право Экология
Экономика Экономико-математическое моделирование Экономическая география
Экономическая теория Этика Юриспруденция
Языковедение Языкознание, филология

design by BINAR Design