Хостинг от HOST PROM - это надежное место для Ваших проектов !

 


ИЗМЕРЕНИЯ ВЕРОЯТНОСТНЫХ ХАРАКТЕРИСТИК СЛУЧАЙНЫХ ПРОЦЕССОВ

1. ОБЩИЕ СВЕДЕНИЯ

Измерения вероятностных характеристик случайных процес­сов (статистические измерения) составляют один из наиболее быстро развивающихся разделов измерительной техники. В на­стоящее время область распространения статистических методов исследования и обработки сигналов измерительной информации практически безгранична. Связь, навигация, управление, диагно­стика (техническая, медицинская), исследование среды и многие другие области немыслимы без знания и использования свойств сигналов и помех, описываемых их вероятностными характери­стиками.

Потребность в изучении свойств  случайных процессов приве­ла к развитию соответствующих методов и средств (преимуще­ственно электрических). Появление анализаторов функций рас­пределения вероятностей, коррелометров, измерителей математи­ческого ожидания, дисперсиометров и других видов измерителей вероятностных характеристик открыло новые возможности в об­ласти создания современной информационной и управляющей техники.

Рассмотрим необходимые исходные определения и общие сведения о статистических измерениях.

В теории статистических измерений используют следующие понятия и их аналоги, заимствованные из теории случайных функций (аналоги из математической статистики): реализация случайного процесса (выборочная функция), мгновенное значе­ние (выборочное значение), совокупность мгновенных значений (выборка), вероятностная характеристика (предел выборочного среднего).

 Введем следующие обозначения: Х (t) — случайный процесс;

i-порядковый номер реализации случайного процесса Х (t);

xi(tj) —мгновенное значение процесса Х (t), соответствующее значению (i-й реализации в j-й момент времени. Случайным назы­вают процесс Х (t), мгновенные значения которого xi (tj) суть случайные величины.

На рис.1 представлена в качестве примера совокупность реализации случайного процесса, воспроизводящих зависимости некоторого параметра Х от времени t.

В теории случайных процессов их полное описание произво­дится с помощью систем вероятностных характеристик: многомерных функций распределения вероятности, моментных функ­ций, характеристических функций и т. п. В теории статистиче­ских измерений исследуемый случайный процесс представляется своими реализациями, причем полное представление осуществля­ется с помощью так называемого ансамбля, т. е. бесконечной совокупностью реализаций. Ансамбль — математическая аб­стракция, модель рассматриваемого процесса, но конкретные реализации, используемые в измерительном эксперименте, пред­ставляют собой физические объекты или явления и входят в ан­самбль как его неотъемлемая часть.                      

Если случайный процесс представлен ансамблем реализации xi (t), i=1, 2, ..., со, то вероятностная характеристика в может быть определена усреднением по совокупности, т.е.

                            N

q  [X (t)]=lim 1/N S g[xi(t)],                 (1)

                N® ¥              i =1

где g [Xi (t)]— некоторое преобразование, лежащее в основе оп­ределения вероятностной характеристики q. Так, например, при определении дисперсии g [Xi (t)]= xi  (t). При этом полагаем, что процесс характеризуется нулевым математическим ожиданием.

Вместо усреднения по совокупности может быть использовано усреднение по времени с использованием k-й реализации xk (t) и тогда

                                                                                            T

         q [X(t)]= lim 1/T ò g[xi(t)]dt.                    (2)

                                                             T ® ¥         0

Например, при определении математического ожидания

 

   T

 M [X (t)]= lim 1/T ò xk  (t) dt.         (3)

                                          T® ¥                0

В общем случае результаты усреднения по совокупности (1) и по времени (2) неодинаковы. Предел выборочного среднего по совокупности (1) представляет собой вероятност­ную характеристику, выражающую зависимость вероятностных свойств процесса от текущего времени. Предел выборочного среднего по времени (2) представляет собой вероятностную характеристику, выражающую зависимость вероятностных свойств процесса от номера реализации.

Наличие и отсутствие зависимости вероятностных характери­стик от времени или от номера реализации определяет такие фундаментальные свойства процесса, как стационарность и эрго­дичность. Стационарным, называется процесс, вероятностные ха­рактеристики которого не зависят от времени; соответственно эргодическим называется процесс, вероятностные характеристи­ки которого не зависят от номера реализации.

Следовательно, стационарный неэргодический случайный процесс — это такой процесс, у которого эквивалентны времен­ные сечения (вероятностные характеристики не зависят от теку­щего времени), но не эквивалентны реализации (вероятностные характеристики зависят от номера реализации). Нестационар­ный эргодический процесс — это процесс, у которого эквивалент­ны реализации (вероятностные характеристики не зависят от номера реализации), но не эквивалентны временные сечения (вероятностные характеристики зависят от текущего времени). Классифицируя случайные процессы на основе этих призна­ков (стационарность и эргодичность), получаем следующие четы­ре класса процессов: стационарные эргодические, стационарные неэргодические, нестационарные эргодические, нестационарные неэргодические.

Учет и использование описанных свойств случайных процес­сов играет большую роль при планировании эксперимента поопределению их вероятностных характеристик.

Поскольку измерение представляет собой процедуру нахож­дения величины опытным путем с помощью специальных техни­ческих средств, реализующих алгоритм, включающий в себя операцию сравнения с известной величиной, в статических изме­рениях должна применяться мера, воспроизводящая известную величину.

Типовые алгоритмы измерений вероятностных характеристик случайных процессов, различающиеся способом применения ме­ры в процессе измерений, представляются в следующем виде:

 

q* [X (t)]= KSdg [X (t)];               (4)

 

 

q* [X (t)]=  Sd Kg [X (t)];                         (5)



Страниц (5):  [1] 2 3 4 5

 


Быстрый хостинг
Быстрый хостинг - Скорость современного online бизнеса

 

Яндекс.Метрика

Load MainLink_Second mode.Simple v3.0:
Select now URL.REQUEST_URI: webknow.ru%2Ftsifrovie_00004.html
Char set: data_second: Try get by Socet: webknow.ru%2Ftsifrovie_00004.html&d=1
					  

Google

На главную Авиация и космонавтика Административное право
Арбитражный процесс Архитектура Астрология
Астрономия Банковское дело Безопасность жизнедеятельности
Биографии Биология Биология и химия
Ботаника и сельское хозяйство Бухгалтерский учет и аудит Валютные отношения
Ветеринария Военная кафедра География
Геодезия Геология Геополитика
Государство и право Гражданское право и процесс Делопроизводство
Деньги и кредит Естествознание Журналистика
Зоология Издательское дело и полиграфия Инвестиции
Иностранный язык Информатика, программирование Исторические личности
История История техники Кибернетика
Коммуникации и связь Косметология Краткое содержание произведений
Криминалистика Криптология Кулинария
Культура и искусство Культурология Литература и русский язык
Литература зарубежная Логика Логистика
Маркетинг Математика Медицина, здоровье
Международное публичное право Частное право Отношения
Менеджмент Металлургия Москвоведение
Музыка Муниципальное право Налоги
Наука и техника Новейшая история Разное
Педагогика Политология Право
Предпринимательство Промышленность Психология
Психология, педагогика Радиоэлектроника Реклама
Религия и мифология Риторика Сексология
Социология Статистика Страхование
Строительство Схемотехника Таможенная система
Теория государства и права Теория организации Теплотехника
Технология Транспорт Трудовое право
Туризм Уголовное право и процесс Управление
Физика Физкультура и спорт Философия
Финансы Химия Хозяйственное право
Цифровые устройства Экологическое право Экология
Экономика Экономико-математическое моделирование Экономическая география
Экономическая теория Этика Юриспруденция
Языковедение Языкознание, филология

design by BINAR Design